Inequality

https://www.linkedin.com/groups/8313943/8313943-6374872087684743171
Let $a, b, c>1$, prove that

$$
a^{\log _{b} c}+b^{\log _{c} a}+c^{\log _{a} b} \geq 3 \sqrt[3]{a b c} .
$$

Solution by Arkady Alt, San Jose,California, USA.
Since by AM-GM Inequality $a^{\log _{b} c}+b^{\log _{c} a}+c^{\log _{a} b} \geq 3 \sqrt[3]{a^{\log _{b} c} \cdot b^{\log _{c} a} \cdot c^{\log _{a} b}}$
remains to prove that $a^{\log _{b} c} \cdot b^{\log _{c} a} \cdot c^{\log _{a} b} \geq a b c$.
Noting that $x^{\log _{y} z}=z^{\log _{y} x}\left(\log _{x}\left(x^{\log _{y} z}\right)=\log _{y} z\right.$ and $\left.\log _{x}\left(z^{\log _{y} x}\right)=\log _{y} x \cdot \log _{x} z=\log _{y} z\right)$
we obtain $\left(a^{\log _{b} c} \cdot b^{\log _{c} a} \cdot c^{\log _{a} b}\right)^{2}=\prod a^{\log _{b} c} \cdot c^{\log _{b} a}=\prod a^{\log _{b} c} \cdot a^{\log _{c} b}=\prod a^{\log _{b} c+\log _{c} b} \geq \prod a^{2}$
because $\log _{b} c+\log _{c} b \geq 2 \sqrt{\log _{b} c \cdot \log _{c} b}=2$)

